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Abstract The simulation of biomolecules requires a vast amount of computer power.
One reason can be found in the high dimensionality of the state space. Coarse graining
methods attempt to improve the computational performance by reducing the represen-
tation of a molecule’s dynamics without losing relevant details. Here, we show two
methods coarsening the full model by still retaining the details which are necessary
for the comprehension of the protein’s conformational dynamics. We review the first
method, which clusters motions of the particles according to a certain criterion. This
approach is a coarse graining strategy in time based on Markov State Models. The
second method, the Hierarchical Relevant Descriptor Detector, is a novel technique
for coarse graining in space revealing a hierarchy in the descriptors of a protein. Thus,
it allows us to describe the relevant motions of a molecule by employing only a minor
number of descriptors. The performance of this method is shown in two examples.

Keywords Coarse graining · Markov State Models (MSM) · Dimension reduction ·
Biomolecules

K. Fackeldey (B) · M. Klimm · M. Weber
Zuse Institut Berlin (ZIB), Takustr. 7, 14129 Berlin, Germany
e-mail: fackeldey@zib.de

M. Klimm
e-mail: klimm@zib.de

M. Weber
e-mail: weber@zib.de

123



2624 J Math Chem (2012) 50:2623–2635

1 Introduction

The function of proteins in the human body is versatile, they can act as structural
proteins for cells, as enzymes or ion channels, to mention a few. Before a protein is in
its native state it passes through a process (protein folding) starting from the primary
structure (amino acid sequence) and ending in the tertiary structure (folded state).
The behavior of a protein in the tertiary structure can be described by the Boltzmann
distribution, which relates the maximum entropy state of a protein (equilibrium state)
to its energy and temperature in a statistical way. As a consequence, the native state
has the lowest free energy. Since the structure of a protein is very flexible, the resulting
potential energy surface is rough and has a large number of local minima. On its way
from initial to final position the molecule also visits intermediate states or metastable
states. In a metastable state, the system stays for a certain time in a subset of the
state space before a random force is large enough causing a transition into another
metastable state.

From the trajectories of a molecular dynamics (MD) simulation the position and
momenta of a biomolecule on the atomistic level are given. Since the first article about
MD simulations [1] much effort has been put into the development of fast and reliable
algorithms [2,4,18,38,39] and their parallelization [17,21,28,31]. However, in trajec-
tory based MD, the maximum size of the integration step is bounded to femtoseconds
whereas protein folding ranges in microseconds which implies the simulation of long
trajectories [27,34] or multiple trajectories [3,29,40]. Moreover, having the data of a
long trajectory, it is still unclear how to interpret these datas in the high dimensional
state space.

Summing up we have two different kinds of challenges, namely a challenge in
the time scale and a challenge in the high dimensionality of the state space. These
two aspects lead us to two computational coarse graining strategies, namely a coarse
graining strategy in time and a coarse graining strategy in space.

1.1 Coarse graining in time

The first aspect offers us not to use the confining small time step in a trajectory but to
consider the conformational changes only, which take place on a coarser time scale.
This leads us to Markov State Models (MSM), e. g. [6,7,9–11,15,33] taking advan-
tage of the fact, that for suitable chosen time steps, the transitions appear stochastic
and memory less. Thus one seeks in MSM to describe the dynamics of a molecule in
terms of transition probabilities between metastable sets. The metastable states can
be identified as subsets in the high dimensional conformation space. We thus seek
for a metastable decomposition, i.e. a decomposition of the state space into disjoint
subsets. We therefore follow the approach of [32] by applying a transfer operator
T , describing a momentum weighted fluctuation in a canonical ensemble. More pre-
cisely, we employ a Galerkin discretization of T in order to represent the metastable
decomposition by linear combinations of characteristic or meshfree basis functions
[13,33].
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1.2 Coarse graining in space

Here, we consider methods, which allow us to reduce the high dimensionality of the
state space by still keeping relevant informations. In general descriptors describe the
structure–activity relationship in molecules, and they can be defined as a collection
of data characterizing the molecule [37]. In contrast to QSAR methods (e.g. [5,12]),
we do not want to use descriptors in order to characterize or compare structures of
molecules. Here, we answer the question:

How to describe the dynamics of a molecule by using less degrees of freedom?

Of course, this question is closely related to dimension reduction of the state space.
In contrast to the above mentioned QSAR methods, we only use dynamical infor-
mations of a trajectory. Having these main activators (most relevant descriptors) it
allows us, to describe conformational changes in a lower dimensional space than the
primal space. For instance, the relevant dynamics (conformational changes) of the
well known alanine dipeptide can be described by using only two degrees of freedom,
namely the dihedral angles φ and ψ . Our scheme reveals from all possible descriptors
these two parameters by only using information form a trajectory.

2 Metastability and coarse graining in time

A molecule passes through intermediate states on its way from the initial to the final
state. Thereby, a protein in an intermediate state is not stable but almost stable (metasta-
ble), which means that the molecule stays for a certain time span in this configuration
before it switches to another state. In the following, we give the above mentioned
terms metastability and conformational change a mathematical foundation. Thereby
we employ MSM by identifying metastable states as subsets in the phase space Γ
and the dynamics by transition probabilities of a transition matrix. More precisely, the
entries of the transition matrix give the probability that a system being in metastable
state A switches to a metastable state B (cp. Fig. 1). We remark, that the different con-
figurations belonging to a certain metastable state are only kinetically closely related,
but not necessarily “geometrically” or “homotopically” similar. However, Hammond’s
postulate [20] states that energetically closely related configurations are also geometric
similar.

Mathematically, we understand a conformation as a part of the conformation space
Ω , which comprises the collection of structurally related configurations. We now
consider n atoms of a molecular system with the spatial coordinates q j ∈ R

3, j =
1, . . . , n, and their n generalized momenta p j ∈ R

3. Then (q, p) ∈ Γ where Γ =
Ω × R

3n is the phase space and Ω the position space. These states are distributed
according to the Boltzmann distribution

ρ(q, p) ∝ exp(−βH(q, p)). (1)

Here β = 1/(kB T ) is the inverse of the temperature T multiplied with the Boltzmann
constant kB , and H denotes the Hamiltonian function which is given by H(q, p) =
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Fig. 1 Sketch of a phase space Γ and its metastable subsets A, B and C

K (p)+ V (q), where K (p) is the kinetic energy and V (q) is the potential energy. The
canonical density can be split into a distribution of momenta η(p) and positions π(q)
that is

π(q) ∝ exp(−βV (q)) and η(p) ∝ exp(−βK (p)).

A direct computation of the distribution is often hardly feasible, since for its evaluation
a high dimensional integral has to be solved. For the dynamics of the system we can
employ a corresponding flow 
τ for a time span τ > 0. This Hamiltonian flow is
given by

(qi , pi ) = Φ iτ (q0, p0), i = 1, . . . , n.

Let q be the projection of the state (q, p) onto the position q and let further p be
chosen randomly according to the distribution η(p), then

qi+1 = qΦ
τ (qi , pi )

describes a Markov process. Note, that the i th state depends on the preceding state
only. It can be shown, that this assumption of Markovianity implies the time inde-
pendence of the corresponding transfer operator (e.g. [32]). Hence, we will define
the above described metastability in a mathematical framework. Let us introduce the
Boltzmann weighted scalar product 〈 f, g〉 := ∫

f (q)g(q) π(q)dq and the charac-
teristic function χA(q), being 1 if q ∈ A and 0 otherwise. Then we can define the
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conditional probability of the system to move during time span τ from subset A1 to
subset A2 by

p(A1, A2, τ ) = 〈χA1 , T τ χA2〉
〈χA1 , χA2〉

,

with the transfer operator

T τ f (q) =
∫

R3n

f (q

−τ (q, p))η(p) dp (2)

which has been introduced by Schütte [32]. The operator in (2) can be explained as
follows: We apply the Hamiltonian dynamcis backwards to a lag time τ and obtain
Φ−τ (q, p), which is projected by q onto the state space. The integral then, aver-
ages over all possible initial momentum variables with given Boltzmann distribution
η. These tools enable us to characterize a subset A ⊂ Ω metastable if it is almost
invariant under the transfer operator T τ , i.e.

p(A, A, τ ) = 〈χA, T τ χA〉
〈χA, χA〉 ≈ 1 (3)

which can be restated as

p(A, A, τ ) ≈ 1 ⇐⇒ 〈χA, T τ χA〉 ≈ 〈χA, χA〉.

Here we can attain to two conclusions: For the first, metastable sets can be identified by
computing the eigenfunctions of the propagator T τ . For the second, the more the frac-
tion in (3) is close to one, the more metastable is the set in A. Let us now assume, that
we can partition the space into N metastable sets, i.e. C1, . . . ,CN , which approximate
metastable eigenfunctions of the operator T τ . Their characteristic basis functions are
given by χC1 , . . . , χCN . Thus, the dynamics of the system can be approximated by
the transition probabilities between the metastabilities. The resulting linear operator
P : span(χC1 , . . . , χCN ) → span(χC1 , . . . , χCN ) is given by the stochastic matrix

(Pi j )i, j=1,...,N with Pi j = 〈T τ χCi , χC j 〉
〈χCi , χCi 〉

. (4)

According to the celebrated Perron Frobenius theorem (e. g. [23]) the row stochastic
matrix P has the eigenvalues λ1, . . . , λN which can be arranged such that λ1 > λ2
≥ · · · ≥ λN . Moreover, let vi be the N dimensional right eigenvector of eigenvalue
λi and ui the left eigenvector, then λ1 = 1, v1 = e = (1, . . . , 1)T , u1 = πN and
λ1 > λi i = 2, . . . , N . Here, πN is a N -dimensional vector, whose elements are the
stationary probabilities of the N characteristic functions. Hence, the right eigenvectors
v1, . . . , vN form an eigenbasis which can be used to express any vector x as:
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x =
N∑

i=1

αivi =
N∑

i=1

〈x, vi 〉vi .

Since Pv j = λ jv j we have

Px = P
N∑

j=1

〈x, v j 〉v j =
N∑

j=1

〈x, v j 〉Pv j =
N∑

j=1

λ j 〈x, v j 〉v j .

We thus can explain the dynamics of a molecule in terms of transition probabilities
(given by Matrix P) between subsets in the conformation space.

3 Coarse graining in space: HRDD

The introduction of the conformation concept allowed us for a coarse graining in time,
which we established in the foregoing section. Here, we exploit, that in most mole-
cules a conformational change can be detected by very few descriptors. One prominent
example of this fact is the Ramachandran plot, where even larger molecules can be
described admissible by using only two descriptors per amino acid. In the follow-
ing, we introduce a novel method, which reveals a hierarchy in the descriptors of a
molecule and thus allows to map the relevant motions (e.g. conformational change)
by using only a few degrees of freedom (descriptors). Having such a hierarchy, we
can start with a one dimensional model, by taking only the first (and most relevant)
descriptor. Using the second most relevant descriptor we can approximate the motion
of the integral by a two dimensional model and so on. This method does not use any
deeper chemical details, in fact, it only relies on the long-term trajectory. The spatial
structure of each molecule can be characterized by its descriptors Di , i = 1, . . . , nd ,
which are a collection of all internal degrees of freedom of the molecule such as dis-
tances between two arbitrary atoms, bond or dihedral angles between three or four
bonded atoms. However the full number of descriptors of a molecule nd to specify it,
would lead to an over-determined system, which means that we have a redundancy in
the descriptors. For instance, pentane consists of 17 atoms, thus it has 17×3−6 = 45
degrees of freedom. Even if we only consider all possible distances between two atoms,
we obtain 17 × 16/2 = 136 possible descriptors. This also leads to the assumption,
that the descriptors of a molecule adhere a hierarchy, according to their influence on
the spatial structure of the molecule. As a consequence, only a fraction of all possible
descriptors, the relevant descriptors suffice to characterize the spatial structure and,
thus, we do not need the high dimensional full phase space, but a low dimensional
space, the so called conformational space.

The detection of the relevant descriptors can either be done by employing detailed
chemical expert knowledge or by analyzing the time series of the molecule’s dynamics.
In the following, we concentrate ourselves to the latter by introducing the Hierarchi-
cal Relevant Descriptor Detector (HRDD). Let us, therefore, assume that we have a
sampling covering the whole conformational space of a molecule with at least two
conformations.
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For all possible and given descriptors Di , i = 1, . . . , nd , we employ a fine uniform
discretization of (the subset of) the conformational space represented by the sampled
data. For the ease of notation we assume that the number of discretization intervals
(bins) N is equal for all descriptors, though, we remark that our method allows for
different dimensions in each descriptor.

For a given trajectory, we calculate the transition matrix Pi ∈ R
N×N , for each

descriptor Di , i. e. increase the entries of Pi
ab and Pi

ba by one if the trajectory switches
within two consecutive time-steps from bin a to bin b. In order to gain a row-stochastic
matrix, that is

∑N
b=1 Pi

ab = 1 ∀a = 1, . . . , N , we normalize each row by dividing
each entry by its row-sum. Following the discussion of the foregoing section we com-
pute for each matrix Pi the corresponding second largest eigenvalue λi

2 and select the
respective descriptor Dk with

λk
2 = max{λ(i)2 | i = 1, . . . , nd}, (5)

i.e. largest of the second largest eigenvalues.
If this λk

2 is close to 1, then the descriptor Dk characterizes at least two metastable
conformations within the sampling and we can continue to calculate the actual number
of metastabilities in this descriptor Dk . Otherwise the algorithm stops in this level (but
might continue in another branch, cp. Fig. 2b). The number of clusters nc is gained
by estimating all eigenvalues λk

l , l = 1, . . . , N , which fulfill

|λk
l − 1| < tol, l = 1, . . . , nc. (6)

The tolerance value must satisfy Eq. (6) for l = 1, 2, since we already required that λk
2

is close to 1 and, thus, at least two metastabilities exist. We remark, that this tolerance
has to be chosen with care: If the tolerance is to large, the number of clusters is large
and thus we might have a poor reduction of the dimension. However if the tolerance
is to small relevant dynamical information of the molecule might get lost.

For the decomposition of the space into clusters Cl , l = 1, . . . , nc, we compute
the corresponding eigenvectors vk

l , l = 1, . . . , nc, building a basis according to the
respective eigenvalues λk

l . Finally the algorithm is recalled for each cluster found in
the last iteration that covers sufficient data. For illustration purpose Fig. 2a shows a
flow chart of the recursive algorithm.

Each non decomposable cluster is related to a metastable conformation. Starting
from the top, the number of branches is given by all second largest eigenvalues sat-
isfying tol. Going down one arm corresponds to “freezing” the first metastable state
described by the most relevant descriptor. In the next branch the metastabilities except
for the frozen parts are computed. For the illustration a rooted tree shall be drawn, see
Fig. 2b. The number of branches on each level (“width”) is given by the number of
eigenvalues according to criterion (6). The height of the tree is determined by (5).

Each leaf is a non decomposable cluster and, thus, a metastable conformation Ml .
Each parent corresponds to a descriptor. The higher the tree-order (height of a tree
from root to leaf) the more descriptors are necessary to characterize a metastable con-
formation. In Fig. 2b the algorithm finds the descriptor Dk1 in the first instance, which
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(b)(a)

Fig. 2 The recursive algorithm, starting with sufficient sampling data of a molecule with at least two
conformations supposed. a Flow chart. b Rooted tree

decomposes the whole conformational space into two clusters C1 and C2. The first
one is not decomposable and, thus, a metastable conformation M1 characterized by
the single descriptor Dk1 . The second cluster is most metastable in descriptor Dk2 and
comprises two clusters C2,1 and C2,2, which prove to be metastable conformations
M2 and M3 characterized by both Dk1 and Dk2 .

We remark, that such a hierarchical scheme has also been applied in the context of
temperature and decomposition of the conformation space [15].

4 Applications

For testing the applicability of the method we analyzed the conformations and descrip-
tors of two small molecules, pentane and alanine dipeptide. Both molecules have been
investigated years before, see [32] and [35] respectively.

To obtain the data for our algorithm, we ran different trajectories with Hybrid Monte
Carlo (HMC) [14] and MD in vacuum at 300 K. In advance, we parametrized the mole-
cules according to different force fields. In case of HMC simulation we used the Merck
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Fig. 3 The resulting tree for pentane with nine conformations described by (ω2, ω1). On the leaves the
types of conformations are shown

Molecular Force Field (MMFF) [19] for both. For the MD simulation with Gromacs
we chose the Amber Force Field ffAmber99sb [22] for pentane and the Optimized
Potential for Liquid Simulations All-Atoms (OPLS-AA) [24] for alanine dipeptide.

For the HMC samplings five chains were started in parallel, for each HMC step
a 60 fs MD trajectory was calculated to generate a trial state. Altogether the sam-
plings covered 6 ns for pentane and 12 ns for alanine dipeptide. We reached an average
acceptance probability of more than 95 %. The convergence was monitored by the
Gelman-Rubin acceptance criterion [16] with a threshold value of 1.2.

In order to generate MD trajectories we used Gromacs [4,21,26,36] with a modified
Berendsen thermostat [8], where the correct distribution of the energy is enforced by
the a constructed force. Furthermore we took an integration step of 1 fs and a reference
temperature of 300 K, and simulated over the same time as with HMC, i. e. 6 ns for
pentane and 12 ns for alanine dipeptide. To have a comparable amount of data we
wrote out the coordinates every 60 fs.

4.1 Pentane

Pentane is able to adopt nine metastable conformations which can be described by
the two dihedral angles ω1 between the carbon atoms C1,C2,C3,C4 and ω2 between
C2,C3,C4,C5 (e.g. [25]). Out of a number of 138 descriptors of the pentane mole-
cule (both the distances between any two atoms and the dihedral angles between the
bonded carbon atoms), HRDD has selected the two relevant ones ω1 and ω2. The
dihedral angles can take the values ±180° (trans), 60° (gauche−) and −60° (gauche+)
which we want to abbreviate to t, g− and g+, respectively. As shown in Fig. 3 our
algorithm found all nine conformations and the two descriptors ω1 and ω2 both for
the sampling data generated by HMC and by MD, the chosen tolerances are shown in
Table 1. In Fig. 4 the absolute number of states for the respective conformations are
given.
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Table 1 The eigenvalue
tolerances of the pentane
simulation

λk
2 ≈ +1 |λk

l − 1| < tol

HMC 0.05 0.1

MD 0.01 0.05

Fig. 4 The resulting tree for pentane with nine conformations described by (ω2, ω1), the numbers on the
leave show the number of states according to the respective conformation

4.2 Alanine dipeptide

The alanine dipeptide which is a, by acetyl and methyl, terminally-blocked alanine
amino acid, has a more complex structure and the metastable conformations are
not that well-defined which reflects in the inconsistent results of different articles,
see Table 4 in [35] for an overview of some of them. Additionally the conforma-
tional space in vacuum is much smaller than in solution. Thus, we considered 175
possible descriptors of alanine dipeptide, thereof 171 distances and four dihedral
angles. For the methylene group at Cβ we chose the united atom presentation since
rotation in this side group leads to structurally identical molecules. The algorithm
should automatically identify the descriptors which include the most relevant infor-
mation about conformational transitions. In vacuum the method found the two dihedral
angles φ (C–N–Cα–C) and ψ (N–Cα–C–N) describing three metastable conforma-
tions, namely Ceq

7 for φ ≈−80° and ψ ≈70°, C5 for φ ≈−150° and ψ ≈155°,
and Cax

7 for φ ≈ 80° and ψ ≈−50°, see Fig. 5a (for both cases: HMC and MD). In
Fig. 5b the corresponding 2-dimensional plot clearly shows the three conformations
of alanine dipeptide

This Fig. 5b shall be used as well to illustrate the division of the conformational
space for the two dihedral angles in case of the MD simulation. The color typifies the
absolute number of states visited by the MD simulation with the coordinates rounded
to two decimal places. In the first instance the conformational space is divided along
the φ-axis into two clusters. The first cluster cannot be divided furthermore, this subset
matches the conformation Cax

7 , while the second cluster can be split along the ψ-axis
into two clusters, which are finally the two other conformations Ceq

7 and C5.
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(a) (b)

Fig. 5 The results for alanine dipeptide: three conformations described by (φ,ψ). a Rooted tree. b The
φ-ψ-frequency-plot (the color describes the absolute number of states visited by the MD sampling) (Color
figure online)

5 Conclusion and outlook

This paper is geared on two aspects: The first one is the conformational change and
the second one is the observation of hierarchies in the descriptors. These two aspects
lead us to coarse graining strategies making the computation of molecule’s dynamics
more tractable by requiring less computational power.

We briefly reviewed the detection of metastable sets by MSM. We revealed that the
second largest eigenvalue is equivalent to the maximal autocorrelation coefficient. In
other words, the side motions in a conformation have a low variance.

The main focus of this paper is the introduction of HRDD (Hierarchical Relevant
Descriptor Detector) as a method for the identification of the relevant internal degrees
of freedom of molecular structures. Whereas principal component analysis (PCA)
extracts the coordinate directions with maximal variance of data, HRDD selects the
degrees of freedom which include the “rarest” transitions, therefore, leading to a good
separation of conformations. The performance of this method has been shown by
two examples, namely pentane and alanine dipeptide. In Fig. 3, the relevant torsion
angles of pentane have been identified. For alanine dipeptide HRDD has selected two
descriptors such that the three conformations can clearly be seen in the corresponding
two-dimensional plot Fig. 5b. Of course, efforts on larger datasets comprising larger
molecules are planned in order to attest the applicability to proteins. Therefor, detailed
chemical knowledge could be used to reduce the initial amount of possible descriptors
(e. g. regarding the atoms of the backbone only) and, thus, improve the performance
of the algorithm.

After having successfully applied the HRDD method to our exemplary molecules
we also want to critically examine it. The first point concerns the bounds for the eigen-
values (5) and (6). As already mentioned above these barriers affect the height and the
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“width” of the illustrating tree. However, we cannot give a general definition but adjust
the values individually for the underlying simulation. The second part refers to the
strictness of the division of the conformational space. Since each time step of the sim-
ulation will be assigned to one conformation, the resulting conformations comprise
transition states as well and might be, therefore, artificially enlarged. Anyway, the
algorithm reveals the correct number of conformations and their relevant descriptors.

During the development of this paper MD simulations for trialanine in explicit
water were run in our workgroup, which incited us to test HRDD for this molecule
in explicit water. As the respective publication is still in preparation, we will forbear
from describing the simulation and the exact results in detail. Anyway, the analysis
with HRDD revealed three conformations described by the two dihedral angles φ and
ψ , which seem to almost coincide with the results in the paper of Mu and Stock [30].
After the publication of the original paper referring to the simulation of trialanine and
after some more examinations of our method with explicit water we intend to publish
this and further results in detail.
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